For mixtures, the constants a and b are given by the mixing rules

$$
\begin{gather*}
a=\sum_{i} \sum_{l}\left(1-\delta_{i j}\right) x_{i} x a_{i}{ }^{1 / 2} a_{j}^{1 / 2} \tag{5}\\
b=\sum_{i} x b_{i} \tag{6}
\end{gather*}
$$

where $\delta_{i j}$ is a binary interaction parameter characteristic of the binary system $i+j$.

Binary interaction parameters were determined by a fit of the critical locus for each binary system. The objective function used may be expressed as

$$
\begin{equation*}
S=\sum_{1}\left\{\left|1-\frac{P_{\mathrm{c}, n}{ }^{\mathrm{calcd}}}{P_{\mathrm{c}, n}{ }^{\text {exptl }}}\right|+\left|1-\frac{T_{\mathrm{c}, n}^{\mathrm{calcd}}}{T_{\mathrm{c}, n}{ }^{\text {exptt }}}\right|\right\} \tag{7}
\end{equation*}
$$

The fit of the data is shown in terms of excess critical properties (actual critical property minus mole faction average property) in Figures 4 and 5. The optimum values of the parameters are given in the figures. The values are close to zero as would be expected for these simple nonpolar mixtures. The equation of state was then used to predict the phase envelopes of the binary systems (using the binary interaction parameters obtained from a fit of the critical locus). Typical calculated phase envelopes are shown in Figures 2 and 3. In general, the predictions were satisfactory. However, the predicted phase envelopes were, as a rule, too narrow. Deviations from the experimental data increased as the size differences between the components increased. We may therefore conclude that binary interaction parameters calculated from the critical locus should not be used to predict phase equillbria away from the critical region. This is a limitation of simple equations of state, since we did not reach this conclusion when a complex equation of state was used (7).

Glossary

a, b	constants in the Peng-Robinson equation
k	constant in the Peng-Robinson equation
P	pressure, MPa
R	gas constant
T	temperature, K
x	mole fraction
δ	binary interaction parameter
ω	acentric factor
Subscripts	
1,2	component 1,2
c	critical
i, j	component i, j
n	nth data point

Superscripts

calcd calculated
exptl experimental
Registry No. 2-Methyipentane, 107-83-5; 2-methylhexane, 591-76-4; 2-methylheptane, 592-27-8; 2-methyloctane, 3221-61-2.

Literature Cited

(1) Peng, D. Y.; Robinson, D. B. Ind. Eng. Chem. Fundam. 1976, 15 , 59.
(2) Kay, W. B. J. Am. Chem. Soc. 1947, 69, 1273.
(3) Genco, J. M.; Teja, A. S.; Kay, W. B. J. Chem. Eng. Data 1960, 25, 350.
(4) Kay, W. B.; McMikning, J. H. Proc. Am. Pet. Inst ., Sect. III 1965, 45 (3), 75.
(5) Smith, B. D.; Srivastava, R. Thermodynamic Data for Pure Compounds Part A, Hydrocarbons and Ketones; Elsevier: Amsterdam, 1986.
(6) Ambrose, D. "Vapor-Liquid Critical Properties"; Natl. Phys. Lab. (U.K.). Report Chem. 102, 1980.
(7) Barber, J. R.; Kay, W. B.; Teja, A. S. AIChE J. 1960, 28, 134.

Isothermal Liquid-Vapor Equilibria of Mixtures Containing Organic Compounds. 2. Excess Gibbs Free Energies of a Hydrocarbon or Tetrachloromethane + a Cyclic Ketone at 298.15 K ${ }^{\dagger}$

Enrico Matteoli and Luclano Leporl*
Istituto di Chimica Quantistica ed Energetica Molecolare del C.N.R., Via Risorgimento 35, 56100 Pisa, Italy

Abstract

Vapor-liquid equillbrium data for mixtures of heptane, cyclohexane, tetrachloromethane, or benzene with cyclopentanone or with cyclohexanone were determined at 298.15 K by headspace gas chromatographlc analysis of the equllibrated vapor phase. Excess molar Glbbs free energles $\boldsymbol{G}^{\mathbf{E}}$ for the examined mixtures were obtained by a least-squares treatment of the equllibrium results. G^{E} are positive for all systems except for benzene + cyclohexanone and, for each given cosolvent, are in the order cyclopentanone $>$ cyclohexanone and heptane $>$ cyclohexane $>$ tetrachloromethane $>$ benzene. Activity coefficients at infinite dillution as well as free energles of solvation were evaluated for all the solutes in all the solvents investigated here.

[^0]
Introduction

As a continuation of our study on solute-solute-solvent interactions ($1-3$) both in water and nonaqueous solvents, here we report excess molar Gibbs energies G^{E} at 298.15 K of an apolar component (heptane, cyclohexane, tetrachloromethane, and benzene) + a cyclic ketone (cyclopentanone and cyclohexanone). These results will be used in forthcoming papers either to get the so-called Kirkwood-Buff integrals (1) or to test the applicability of a quasi-chemical group contribution model (4) to mixtures involving cyclic molecules.

A headspace gas chromatographic technique already used in experiments (3), which was proved simpler and faster than conventional static or dynamic methods, was employed for measuring vapor composition, y, as a function of liquid composition, x, over the whole composition range. G^{E} were obtained from the equilibrium results by a modification of Barker's method (5).

Apparatus and Method

The apparatus and procedure were described in detail in a previous work (3), where the reliability and suitability of headspace GC for obtaining $x-y$ data was checked. Briefly, an equilibration cell was combined with a gas chromatograph for the analysis of the gas phase, air + vapors, at atmospheric pressure. The chromatographic column was a $2 \mathrm{~mm} \times 2 \mathrm{~m}$ stainless-steel tube packed with methylsilicon polymer (SE30) on Chromosorb W60-80. Only for the system benzene-cyclopentanone, Carbowax 20M was used. A hot-wire detector was employed in all experiments. Peak areas were obtained by means of a C. Erba Mega 2 integrator interfaced to the chromatograph. For a given liquid composition, the reproducibility of the area ratio A_{1} / A_{2} of the two components was usually about 1%.

All mixtures were prepared by weighing. The uncertainty in the liquid mole fraction x, after correction for buoyancy and for evaporation of constituents, was estimated less than 0.04%, though becoming 10 times larger at extreme dilutions.

The values of y were obtained from the measured A_{1} / A_{2} ratio and the response factor r_{f} of the chromatograph for the mixture under examination, by the equation

$$
\begin{equation*}
y=1 /\left[1+r_{\mathrm{f}} /\left(A_{1} / A_{2}\right)\right] \tag{1}
\end{equation*}
$$

The values of r_{f} for each pair of components were determined, by calibration analyses, through the equation

$$
\begin{equation*}
r_{1}=\left(A_{1}{ }^{*} / A_{2}^{*}\right) /\left(\rho_{1}^{*} / p_{2}^{*}\right) \tag{2}
\end{equation*}
$$

where $p_{1}{ }^{*}$ is the vapor pressure of the i th pure component and ($A_{1}{ }^{*} / A_{2}{ }^{*}$) is the area ratio of the peaks obtained by separately injecting into the chromatograph equal volumes of the two vapors equilibrated with the pure liquids at 298.15 K . The overall uncertainty in y, resulting mostly from the uncertainty in A_{1} / A_{2}, was generally less than 1%.

Materials

Heptane, cyclohexane, cyclopentanone, and cyclohexanone were products from Fluka; benzene and tetrachloromethane from Carlo Erba. All chemicals were used without further purification. Purities, as checked by means of GC, were >99.5 mass \%. Purity of substances is not a critical factor in consequence of the GC technique employed in determining the composition of vapors.

Data Treatment

For each liquid mixture of mole fraction x_{i}, the experimental ratio of the activity coefficients f_{i} of the constituents is given by
$\left(f_{1} / f_{2}\right)_{\text {expt }}=\left(x_{2} / x_{1}\right)\left(p_{2}^{*} / p_{1}{ }^{*}\right)\left(w_{2} / w_{1}\right)\left(A_{1} / A_{2}\right)\left(1 / r_{1}\right)$
where the factor w_{i}, relevant to vapor-phase nonideality, was calculated taking into account also the presence of air in the vapor phase (3). In Table I are collected the values of the vapor pressure p^{*} and the molar volume V^{*} of the pure liquids, as well as values of the second virial coefficient $B_{i j}$ of the pure gas i, and of the mixed virial coefficient $B_{i j}$, used in evaluating w_{i}, whose expression is given elsewhere (3,9).

The experimental values of the ratio f_{1} / f_{2} in eq 3 were used in a nonlinear least-squares procedure, similar to that described by Barker (5) for the treatment of x-total pressure data. For this purpose, the sum S of the squared residuals extended over all n experimental points

$$
\begin{equation*}
S=\sum_{k=1}^{n}\left\{\ln \left(f_{1} / f_{2}\right)_{\text {expt }}-\ln \left(f_{1} / f_{2}\right)_{\text {calcal }}{ }_{k}{ }^{2}\right. \tag{4}
\end{equation*}
$$

Table I. Pure-Component Properties at 298.15 K Used in the Data Reduction

compd	$\begin{gathered} p^{* a} / \\ \mathrm{kPa} \end{gathered}$	$\begin{gathered} V_{\mathrm{m}}^{* b} / \\ \left(\mathrm{cm}^{3}\right. \\ \left.\mathrm{mol}^{-1}\right) \end{gathered}$	$\begin{gathered} -B_{i i}^{c} / \\ \left(\mathrm{dm}^{3}\right. \\ \left.\mathrm{mol}^{-1}\right) \end{gathered}$	$-B_{i j}{ }^{d}$ $\left(\mathrm{dm}^{3}\right.$ mol^{-1})	
heptane	6.09	147.47	2.8	1.7	2.0
cyclohexane	13.01	108.75	1.7	1.3	1.56
benzene	12.68	89.41	1.48	1.2	1.45
tetrachloromethane	15.25	97.09	1.6	1.2	1.5
cyclopentanone	1.52	$89.1{ }^{\text {e }}$	$2.7{ }^{\text {e }}$		
cyclohexanone	$0.62 f$	104.18	$3.3{ }^{\text {e }}$		
nitrogen			0.0		

${ }^{a}$ Vapor pressures from ref 6. ${ }^{b}$ Molar volumes from ref 7. ${ }^{c}$ Virial coefficients of pure components extrapolated from higher temperature data in ref $8 .{ }^{d}$ Cross virial coefficients computed according to ref 9 ; for each compound, the first value refers to mixtures with cyclopentanone, the second one to mixtures with cyclohexanone. Most $B_{i j}$ (and some $B_{i i}$) are affected by large uncertainties; however , the calculated w_{i} terms were found different from 1 by less than 2.5% for all mixtures, and partially compensating in the ratio w_{2} / w_{1} (eq 3). ${ }^{6}$ Estimated value. ${ }^{f}$ Reference 7. ${ }^{8}$ Reference 8; the same value applies for all mixtures of nitrogen (or oxygen) with the listed substances.
is minimized, and thus the coefficients c_{l} of the Redlich-Kister equation (10) $(i, j=1,2 ; i \neq j)$

$$
\begin{align*}
& \ln f_{i}=\left\{c_{1}+3(-1)^{\prime} c_{2}+5 c_{3}\right\} x_{j}^{2}- \\
& 4(-1)^{\prime}\left\{c_{2}+4(-1)^{\prime} c_{3}\right\} x_{j}^{3}+12 c_{3} x_{j}^{4} \tag{5}
\end{align*}
$$

representing the activity coefficients f_{i}, appearing in the expression for $\left(f_{1} / f_{2}\right)_{\text {calcd }}$, were determined. Also the response factor r_{f} of the gas chromatograph, appearing in the expression for $\left(f_{1} / f_{2}\right)_{\text {expl1 }}$ (eq 3), was treated as an adjustable parameter to be determined in the least-squares procedure.

Minimizing the residuals of $\ln \left(f_{1} / f_{2}\right)$ was found the same as minimizing the relative residuals of A_{1} / A_{2}. This treatment of $x-\ln \left(f_{1} / f_{2}\right)$ was preferred to that of $x-y$, adopted previously (3), since it results in a better fitting of the activity coefficients of both components in the dilute regions.

Excess molar Gibbs energies G^{E} were computed from the parameters c_{l} in eq 5 through the equation

$$
\begin{equation*}
G^{E} / R T=x_{1} x_{2}\left[c_{1}+c_{2}\left(x_{1}-x_{2}\right)+c_{3}\left(x_{1}-x_{2}\right)^{2}\right] \tag{6}
\end{equation*}
$$

By the calculation procedure described above, the activity coefficients of both components were obtained simultaneously in an analytical form (eq 5). A different method was also applied so as to calculate the activity coefficients f_{1} and f_{2} separately. The following equation, holding under the assumption of ideal behavior of vapor phase, was employed:

$$
\begin{equation*}
f_{i}=A_{i} / A_{i}{ }^{*} x_{i} \tag{7}
\end{equation*}
$$

The area A_{i}, corresponding to the vapor in equilibrium with the mixture of mole fraction x_{i}, is divided by $A_{i}{ }^{*}$, the area of the peak of the vapor equilibrated with its pure liquid. For all mixtures considered here, the f, values obtained by this direct method were found to be reproduced within experimental error by the function (eq 5) derived from the least-squares treatment explained above. This is illustrated, as an example, in Figure 1 where the activity coefficient of both components is plotted against x for the system heptane-cyclopentanone.

Though either of the methods gives results comparable and equally reliable, we preferred the mathematical procedure which furnishes smoothed and thermodynamically consistent activity coefficients.

Results and Discussion

The experimental $x-y$ quantities are reported in Table II. Table III gives the c_{i} values of eq 5 as well as the experimental and calculated values of r_{f}. On the average, the standard

Table II. Experimental Vapor-Liquid Equilibrium Data for Binary Systems at $298.15 \mathrm{~K}^{a}$

x	y	x	y	x	y
$(x) n-\mathrm{C}_{7} \mathrm{H}_{16}+(1-x) c-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}$					
0.0127	0.231	0.2902	0.748	0.8457	0.889
0.0235	0.314	0.3874	0.768	0.8936	0.908
0.0556	0.512	0.4302	0.779	0.9395	0.937
0.0795	0.563	0.5029	0.796	0.9739	0.9699
0.1455	0.676	0.5866	0.821	0.99064	0.9883
0.2177	0.720	0.7148	0.847		
$(x) n-\mathrm{C}_{7} \mathrm{H}_{16}+(1-x) \mathrm{c}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$					
0.00312	0.118	0.2618	0.860	0.8098	0.952
0.01047	0.300	0.3588	0.885	0.8587	0.957
0.0241	0.492	0.4694	0.902	0.9161	0.9718
0.0540	0.665	0.5526	0.911	0.9387	0.9776
0.1072	0.787	0.6192	0.924	0.9732	0.9882
0.1829	0.840	0.6998	0.935	0.99439	0.9978
(x) $\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}+(1-x) \mathrm{c}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}$					
0.00896	0.226	0.3963	0.890	0.9008	0.9588
0.0190	0.379	0.4867	0.906	0.9435	0.9718
0.0542	0.610	0.5740	0.911	0.9840	0.9896
0.0965	0.716	0.6732	0.923	0.99137	0.9939
0.1810	0.808	0.7691	0.936		
0.2936	0.862	0.8373	0.947		
$(x) \mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}+(1-x) \mathrm{c}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$					
0.00591	0.262	0.3039	0.937	0.7989	0.976
0.01065	0.372	0.4021	0.950	0.8999	0.9858
0.0257	0.602	0.5184	0.958	0.9586	0.9927
0.0747	0.805	0.5997	0.967	0.9824	0.9965
0.1255	0.866	0.6913	0.971		
0.2082	0.914	0.7974	0.978		
$(x) \mathrm{C}_{6} \mathrm{H}_{6}+(1-x) \mathrm{c}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}$					
0.01957	0.153	0.3994	0.851	0.8996	0.9849
0.06259	0.371	0.4993	0.890	0.9495	0.9930
0.1451	0.587	0.6143	0.934	0.9652	0.9951
0.2200	0.710	0.6857	0.948	0.9754	0.9965
0.3119	0.789	0.8133	0.973	0.9764	0.9971
$(x) \mathrm{C}_{6} \mathrm{H}_{6}+(1-x) \mathrm{c}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$					
0.00909	0.158	0.2582	0.868	0.8109	0.9900
0.02870	0.365	0.3719	0.920	0.8981	0.9948
0.0615	0.560	0.4621	0.944	0.9731	0.9988
0.1101	0.703	0.5510	0.961	0.9867	0.9994
0.1799	0.800	0.6713	0.979		
$(x) \mathrm{CCl}_{4}+(1-x) \mathrm{c}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}$					
0.01834	0.195	0.2651	0.805	0.7373	0.9619
0.0352	0.302	0.3797	0.875	0.8472	0.9774
0.0845	0.529	0.4908	0.908	0.9464	0.9920
0.1568	0.703	0.6180	0.938	0.9896	0.9985
$(x) \mathrm{CCl}_{4}+(1-x) \mathrm{c}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$					
0.00721	0.172	0.2902	0.914	0.7959	0.9893
0.0283	0.431	0.4116	0.944	0.8747	0.9937
0.0534	0.587	0.4996	0.9613	0.9725	0.9987
0.1106	0.750	0.5922	0.9724		
0.1967	0.862	0.6877	0.9829		

${ }^{a} y$ values were obtained from eq 1 by using the least-squares r_{f} 's from Table III.
deviation s for the representation of $\ln \left(f_{1} / f_{2}\right)$ amounts to 0.04 ; the one for y, not reported in Table III, was found to be 0.005 . For most systems examined here, an equally good reproduction of the experimental behavior is obtained if the Wilson equation (10), instead of the Redich-Kister one (eq 5), is used.

In Figure 2 the plots of y and $\operatorname{In}\left(f_{1} / f_{2}\right)$ vs x are shown for the system cyclohexane-cyclohexanone. The data of Boublik and Lu (11) at 323.15 K are also reported for comparison. We do not know of any other result in the literature which can be used for comparison with any one of our mixtures.

In Figure 3 is illustrated the behavior of G^{E} for all systems examined. With the exception of the tetrachloromethane-cyclopentanone system, all mixtures exhibit positive deviations, which, for a given ketone, decrease in the order heptane, cy-

Figure 1. Plot of $\ln f_{1}$ and $\ln f_{2}$ against x_{1} for the heptane (1)cyclopentanone (2) system at 298.15 K : (O) experimental $\ln f_{1}$ (eq 7); (■) experimental in f_{2} (eq 7); (-) calculated from eq 5 with parameters from Table III.

Figure 2. Plot of y_{1} (lower curve) and $\ln \left(f_{1} / f_{2}\right)$ (upper curve) against x, for the system cyclohexane (1)-cyclohexanone (2): (O) present work (298.15 K); (口) ref 11 (323.15 K); (Δ) evaluated by us from $x-y-P$ at 323.15 K from ref 11; (---) calculated from eq 5 with parameters from Table III; (-) calculated as $y_{1}=1 /\left[1+\left(p_{2}{ }^{*}\right)\right.$ $\left.\left.p_{1}{ }^{*}\right)\left(f_{2} / f_{1}\right)\left(w_{2} / w_{1}\right)\right]$ with f_{l} from eq 5.

Figure 3. Comparison between calculated G^{E} curves for A (1)cyclopentanone (2) systems (on the left), and those for A (1)-cyclohexanone (2) (on the right). From top to bottom: $A=$ heptane, cyclohexane, tetrachloromethane, benzene.

Table III. Least-Squares c_{i} Coefficients of Eq 5, Chromatographic Response Factor r_{f}, Standard Deviation s for Representation of $\ln \left(f_{1} / f_{2}\right)$, and Gibbs Excess Free Energy G^{E} at $x=0.5$ for Binary Systems at 298.15 K

system		c_{1}	c_{2}	c_{3}	$r_{f}{ }^{\text {a }}$	s	$\begin{gathered} G^{\mathrm{E}}(x=0.5)^{b} / \\ \left(\mathrm{J} \mathrm{~mol} \mathrm{~mol}^{-1}\right) \end{gathered}$
compd 1	compd 2						
$n-\mathrm{C}_{7} \mathrm{H}_{16}$	c - $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}$	1.5165	-0.0397	0.1984	1.050 (1.02)	0.039	940
$n-\mathrm{C}_{7} \mathrm{H}_{16}$	c ($\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$	1.3381	-0.0140	0.1315	0.893 (0.92)	0.050	829
$\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}$	c ($\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}$	1.3537	0.2216	0.2274	0.807 (0.78)	0.035	839
$\mathrm{c}-\mathrm{C}_{6} \mathrm{H}_{12}$	$c-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$	1.1319	0.2165	0.1231	0.680 (0.65)	0.038	701
$\mathrm{C}_{6} \mathrm{H}_{6}$	c - $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}$	0.0794	0.0269		0.806 (0.84)	0.047	49
$\mathrm{C}_{6} \mathrm{H}_{6}$	c- $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$	-0.0877	-0.0331		0.625 (0.61)	0.048	-54
CCl_{4}	c- $\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}$	0.3087	0.0734		0.971 (0.94)	0.037	191
CCl_{4}	c - $\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}$	0.0937	0.0320		0.766 (0.74)	0.052	58

${ }^{a}$ Chromatographic response factor determined by least-squares method; values in parentheses are the experimental r_{f} 's (eq 2). ${ }^{b}$ An average uncertainty on G^{E} at $x=0.5$ of $10 \mathrm{~J} \mathrm{~mol}^{-1}$ was calculated from the error on c_{i} coefficients.

Table IV. Activity Coefficients at Infinite Dilution f_{i}^{∞} and Standard Molar Gibbs Free Energies of Solvation ΔG_{i}° of the Components of Binary Systems at 298.15 K

system	$f_{1}{ }^{\text {® }}$	$\begin{gathered} -\Delta G^{\circ}{ }_{1}{ }^{a} / \\ \left(\mathrm{kJ}{ }^{1}\right. \\ \left.\mathrm{mol}^{-1}\right) \end{gathered}$	$f_{2}{ }^{\infty}$	$-\Delta G^{\circ}{ }_{2}{ }^{\alpha}$ (kJ mol^{-1})
heptane (1)-cyclopentanone (2)	5.78	16.54	5.34	18.94
heptane (1)-cyclohexanone (2)	4.41	16.82	4.29	21.71
cyclohexane (1)-cyclopentanone (2)	3.89	15.64	6.07	19.37
cyclohexane (1)-cyclohexanone (2)	2.82	16.05	4.36	22.43
benzene (1)-cyclopentanone (2)	1.05	18.95	1.11	24.07
benzene (1)-cyclohexanone (2)	0.95	18.81	0.89	26.85
tetrachloromethane (1)cyclopentanone (2)	1.27	18.02	1.47	23.17
tetrachloromethane (1)cyclohexanone (2)	1.06	18.08	1.13	26.06

Glossary

$A_{i} \quad$ peak area of component i in the vapor phase
$A_{i}{ }^{*} \quad$ peak area of pure vapor of i
$B_{i j} \quad$ second virial coefficient due to interaction of mole-
cules i and $j(i, j=1,2), \mathrm{dm}^{3} \mathrm{~mol}^{-1}$
$c_{i} \quad$ coefficients for eq 5
$f_{i} \quad$ activity coefficient of component i
$f_{i}^{\infty} \quad$ activity coefficient of i at infinite dilution
$G^{E} \quad$ excess Gibbs free energy, $\mathrm{J} \mathrm{mol}^{-1}$
$\Delta G^{\circ} \quad$ Gibbs free energy of solvation of $i\left(\mathrm{eq} 8\right.$), $\mathrm{kJ} \mathrm{mol}^{-1}$
$n \quad$ number of experimental x, y couples
$p_{i}{ }^{*} \quad$ vapor pressure of pure liquid i, kPa
$R \quad$ gas constant, $\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
$r_{f} \quad$ response factor of gas chromatograph
$s \quad$ standard deviation of the fit
$S \quad$ sum of residuals
T absolute temperature, K
$V_{i}{ }^{*} \quad$ molar volume of pure liquid $i, \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$
$w_{i} \quad$ vapor-phase non-ideality factor of i
$x_{i} \quad$ liquid-phase mole fraction of i
$y_{i} \quad$ vapor-phase mole fraction of i
Registry No. $n-\mathrm{C}_{7} \mathrm{H}_{16}, 142-82-5 ; \mathrm{c}_{16} \mathrm{C}_{6} \mathrm{H}_{12}, 110-82-7 ; \mathrm{CCl}_{4}, 56-23-5 ; \mathrm{C}_{6} \mathrm{H}_{6}$ 71-43-2; $\mathrm{C}-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CO}, 120-92-3$; $\mathrm{c}-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}, 108-94-1$.

Literature Clted

(1) Matteoli, E.; Lepori, L. J. Chem. Phys . 1984, 80, 2856.
(2) Lepori, L.; Matteoli, E. J. Chem. Thermodyn. 1986, 18, 13.
(3) Matteoli, E.; Lepori, L. J. Chem. Thermodyn. 1986, 18, 1065 (part I of this series).
(4) Keniaian, H. V.; Grolier, J.-P. E.; Benson, G. C. J. Chem. Phys. 1978, 75, 1031.
(5) Barker, J. A. Aust. J. Cham. 1953, 6, 207.
(6) Hala, E.; Wichterle, I.; Polak, J.; Boublik, T. Vapour-Liquid Equillibrium Data at Normal Pressures; Pergamon: Oxford, U.K., 1968.
(7) Gmehling, J.; Onken, U.; Artt, W. Vapor-Liquid Equilibria Data Collection; Dechema: Frankfurt am Main, 1979; Vol. 1, Parts 3+4.
(8) Dymond, J. H.; Smith, E. B. The Virial Coefficients of Pure Gases and Mixtures. A Critical Compilation; Clarendon: Oxford, U.K., 1980.
(9) Scatchard, G.; Ticknor, L. B. J. Am. Chem. Soc. 1952, 74, 3724.
(10) Prausnitz, J. M. Molecular Thermodynamics of Fluid-Phase Equilibria; Prentice-Hall: Englewood Cliffs, NJ, 1969.
(11) Boublik, T.; Lu, B. C. Y. J. Chem. Eng. Data 1977, 22, 331.

Received for review January 8, 1987. Accepted February 11, 1988.

[^0]: ${ }^{\dagger}$ Part I, ref 3.

